RAPID COMMUNICATIONS

Increment definitions for scale-dependent analysis of stochastic data

PHYSICAL REVIEW E 70, 055103R) (2004

Matthias Waechtel* Alexei KouzmitcheV" and Joachim Peinké
Ynstitute of Physics, Carl-von-Ossietzky University, D-26111 Oldenburg, Germany
?|nstitute of Theoretical Physics, University of Munster, D-48149 Minster, Germany
(Received 29 April 2004; published 16 November 2p04

It is common for scale-dependent analysis of stochastic data to use the incekfneit &(t+r)—£(1) of a
data setf(t) as a stochastic measure, wherdenotes the scale. For joint statisticsAdft,r) and A(t,r’) the
guestion of how to nest the increments on different saalesis investigated. Here we show that in some cases
spurious correlations between scales can be introduced by the common left-justified definition. The conse-
guences for a Markov process are discussed. These spurious correlations can be avoided by an appropriate
nesting of increments. We demonstrate this effect for different data sets and show how it can be detected and
quantified. The problem allows to propose a unique method to distinguish between experimental data generated
by a noiselike or a Langevin-like random-walk process, respectively.

DOI: 10.1103/PhysRevE.70.055103 PACS nunm®)er02.50-r, 05.10-—a, 95.75.Wx

[. INTRODUCTION can be grasped by a Fokker-Planck or Langevin equation
[1-5]. This approach has been used by different researchers

The complexity of most disordered systems depends oifn a number of applicationf2—9]. In some cases also the
the scale at which they are observed. Therefore, stochastiuestion of increment definitions has been discussed, as in
analysis of those systems uses scale-dependent quantities for.
their characterization. The term “scale” here means for a data In this paper we want to address the question of whether
set&(t) the distance between two arbitrary pointst’ with  the relative location of the increments may introduce spuri-
t’—t=r (t may denote time as well as space in this context ous correlations between different scales. In particular, we
The increment A(t,r)=&(t+r)—&(t) is a common scale- investigate the two cases of the left-justified increment
dependent measure of complexity and disorder. Well-known
examples for other scale-dependent measures of complexity Ay(t,r) = £(t+r) - &(1) (1)
are the autocorrelation functioR(r)=(&(t)&(t+r)), the rms
width w, (1) =([&(t) - €], or wavelet functions.

Traditionally, the investigation of statistical properties is Ac(t,r) = &(t+1/2) - &(t-r/2). 2
performed on distinct scales, e.g., by means of the structu
functions(A(t,r)" given by the probability density functions
(PDP p(A(t,r)). An advanced approach is to try to describe
the joint statistics of the chosen measure on many differen?
scales. This is achieved by the knowledge of the joint PDF
p(A(Lrl) i ;A(t,rn))_ By these joint PDF also the correla- Il. INCREMENT DEFINITIONS AND CORRELATIONS
tions between scales are worked out, showing how the com- BETWEEN SCALES
plexity is linked between scales.

If the statistics of the scale-dependent measure can b&
regarded as a Markov process evolving jrthe knowledge
of two-scale conditional PDF is sufficient for a complete
description of multiscale joint PDFL]. The conditional PDF
p(A4(t,ry)|Ag(t,ro)) denotes the probability of finding an in- 1
crementA(t,r;)=A; on the scale; under the condition that P(&t) = ﬁexp{— &1(20%)},
at the same timeé on a different scale, another increment N2
A(t,rg)=A, has been found. The validity of the Markov
property can be tested by the investigation of conditional P& &t = P(EYP(E L) fori #Kk, (3)
PDF [2], of the Chapman-Kolmogorov equatidB], or of
reconstructed noigg]. If, furthermore, the noise involved in

and the centered increment

\‘?Ve will discuss the implications of these increment defini-
tions on two different types of stochastic processes and com-
are the results for experimental data.

First, two idealized types of stochastic processes for dis-
ete times are defined. The first one is called white-noise-
like random walk(WNR) with the random variablé(t;)
given by

which implies that

the process is Gaussian distributed, the whole joint statistics (E(L) ELY)) = 028, (4)
. _ _ _ and(&(t)|&(t) =x) =0 fork>i. (5
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p(A((t,r)|A((t,rg)) strongly depends on the value of
A((t,rg). In contrast, the conditional PDF of theentered
increments(b) is independent ofA.(t,ro) and thus both
scales are uncorrelated for centered increments. For corre-
sponding diagrams calculated for the LRW procésst
shown hergwe find identical PDF for left-justified and cen-
tered increments, similar to Fig(a, and in accordance with
Eqg. (10).

Ayftrq) [0]

[Il. CONSEQUENCES FOR MARKOV PROPERTIES

—_
(=2
=

For the analysis and description of stochastic data by
means of a Fokker-Planck equation, as mentioned in the In-
troduction, the underlying process has to be Markovian. In
the previous section we have shown that the left-justified
increment definition can introduce additional correlations.
This effect also influences the Markov properties of these
increments.

Ac(tro) [0] It is indeed straightforward to see that the left-justified
incrementA(t,r) of a WNR is consequently not a Markov
process in the scale variabte A necessary condition for a
tochastic process to be Markovian is the Chapman-
olmogorov equatiorj1] (here we use the notatiaf(t,r;)

Aqftiry) [0]

FIG. 1. Conditional PDF ofa) left-justified and(b) centered
increments of a white-noise-like random walk. Scalgandr; are
116 and 100 sample steps, respectively. PDF are displayed as co
tour lines, the levels differ by a factor of 10, with an additional level

at 0.3. =4))

i p(A|,3|A|’1)=J P(A) 341 DP(A JA )dA ,  (1D)

&) = 2 wity), (6) -

k=t for any tripletr; <r,<rs.
with w(t,) distributed as in3). This implies that here, For the WNR process we first derive frath) and(3) the
. ) correlation matrix S for A;;,A;, with elements s;

(EB)ét)) =io® fork=i D =@aA,i,j=1, 2:
and(&(t|&(t) =xp) =%, for k> 1. ®) S:(Zaz 02) 12
o? 20%)°

The correlations between different scales for both incre-
ment functionsA(t,r) and A(t,r) can be calculated easily.  Because the difference of two Gaussian distributed ran-
Taking increments of the WNRB) andr;>ry>0 we get dom variables is also Gaussian, we can derive two-

_ dimensional PDF ofA;,A;, using the general two-
At try) =o?, dimensional form of the Gaussian distributicafter [1])

(Ac(t,ro)Ac(t,ry)) = 0. 9 1 1 § .

Note that for arbitrary different scales af correlations are P(Ai5A) = sz’FtseXp 2/ SRR
present even though there are no correlations at all in the (13)
data&(t). These spurious correlations are introduced by the

left-justified increment because for a fixed valugne incre-  Using (12) and (13), we can now explicitly calculate both
mentsA(t,r) of all scalesr have the termé(t) in common,  sides of Eq(11), namely

see Eq(1). For the LRW we obtain

A A ) = 1 _(Ay3- A 4/2)? 14
A1LTIALT)) = (At T At ) =10 (10) P(AialA) = o= o exp = (14)
with r{>ry>0. In contrast to the WNR, identical correla- and
tions of both increment definitions result here.
Correlations between two scalggr, can directly be ob- *
served as dependencepsfy;|Ay) on A,. Increment statistics P(A) A P4 oA DA,
of the WNR are presented in Fig. 1 as conditional PDF of s
left-justified and centered increments. Data have been gener- 1 (A 53— A 4/4)? (15)
ated using the programasbeyv from [10] and normalized by 2m\15/8> (15/4) 02

o. As expected from Eq9), for theleft-justifiedincrements
(a) a correlation between both scalgsr is evident because Obviously the Chapman-Kolmogorov equati@tl) is vio-
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FIG. 3. The conditional expectation valueT(r,xg)
=(A(t,r)| &t)=xo) for different data setsT is shown as function of
X for fixed scales.

A
o
-~

tained from surface height profiles of a smooth asphalt road.
The distance between consecutive data points is 1.04 mm;
further details of the measurement are found5iiLl]. The
difference between both types of increments is evident and
similar to that for the WNR in Fig. 1. In Figs.(B) and 2c)
conditional PDF are shown in the same manner for velocity
increments measured in a turbulent free jet at Re <27

(for details sed?2]). In both cases scalg is L/2. The scale
differencedr =ry—r4 is small(1.5 \) for (b) and large(L) for

(c) [12]. It can be seen in Fig.(B) that here conditional PDF

of left-justified and centered increments are identical and the
increment definition does not influence the statistics. éfor
=L at the end of the inertial range, Fig(c?, a slight differ-
ence of both conditional PDF has already occurred. The defi-
nition of L [12] provides that for large scale differences
or>L a transition to a noiselike behavior as in Figs. 1 and
FIG. 2. Conditional PDF of left-justifiedsolid lineg and cen-  2(8) can be expected. Nevertheless, only a small fraction of

tered (broken lines increments of experimental datés) Height the correlation between the scalesr, is detected as spuri-

profiles from a smooth asphalt road using scatgs137,r,  OUS here. o N _
=104 mm, (b), (c) velocity time series from a turbulent free jet, As a second indicator the conditional expectation value

with small (b) and large(c) scale differencegr=ry-r; (see text
PDF are plotted as in Fig. 1. T(r, %) = (A(t,1)| (1) = Xo) (16)

Ag(try) [o]

—
()
<2

AE(try) [o]

AE(trp) [o]

lated for left-justified increments of the WNR on any scalescdn be estimated from the measured daa, x,) quantifies

r,<r,<rs The same procedure can be used to see that fgP€ influence of the valug(t)=x, on the left-justified incre-
centered increments the Markov property holds. ment A(t,r). It follows immediately thatT(r,x)=(£(t

+1) | &(t) =Xg) —Xo- With Egs.(5) and (8) we obtain the ideal
casesT(r,xg)=-%, for the WNR andT(r,xy)=0 for the
LRW. If for experimental data there is a strong dependence
of T onxy the data must be regarded as noiselike in the sense
The question if, or if not, the above-mentioned spuriousof the WNR in the respective length scale, and for scale-
correlations between different scales are introduced by thdependent analysis the use of left-justified increments is not
increment definition is of practical importance for the analy-appropriate. If otherwis@ is independent ok, the data be-
sis of measured data. For data which behave like the LRWhave like a LRW, and thus the increment definition is not
i.e., (&(t+1)| &) =xg) =X, rather than(&(t+r)| &(t)=x,)=0 as  important.
for the WNR, the increment definition should be unimpor- In Fig. 3 we present the dependenceTobn &(t)=x, for
tant. No spurious correlations would be created in eithedifferent data sets. Data of both ideal cases were generated as
case. In contrary, for data which behave more like the WNRJn Fig. 1. Turbulence and asphalt road data have already been
the increment definition should be more important. shown in Fig. 2. As expected, we see that for the LRW there
As shown above, the conditional PDF can serve as & no dependence df(r,X,) onXo. In contrast, for the WNR
means to discriminate between true and spurious correlatioras well as for the surface data the dependence is clear with
between scales if we compare conditional PDF of left-T(r,xy)=-Xo. For the turbulent velocity increments it can be
justified and centered increments. In Fig. 2 conditional PDFseen that on the small scale =\ the influence ok, onT is
are shown for these increments of two experimental datanly small, while on the large scaler =L the dependence is
sets. Figure @) displays PDF of both increment types ob- more pronounced. This finding corresponds to Fig. 2, where

IV. INDICATORS FOR SPURIOUS CORRELATIONS
CAUSED BY INCREMENT DEFINITION
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for small scales[Fig. 2(b)] the conditional PDF of left- 2(b), where the PDF ofA; andA. are shown to be identical
justified and centered increments were identical, while forfor small scale differencesy—rq, and only at the integral

large scalegFig. 2(c)] a difference occurred. length scale a difference occysee Fig. 2c)]. Detailed con-
sequences are currently being investigdtes).
V. CONCLUSIONS The conditional expectation valugr,X;) allows one to

quantify the influence of a left-justified increment. Neverthe-

We found that for scale-dependent analysis of stochastitess, the specification of a threshold in a statistically mean-
data, where the connections between different scales are imgful way is still an open question.
vestigated using increment statistics, the definition of the in- While in this paper we used the increme(it$ and(2) to
crement can be important, depending on the nature of thdemonstrate the introduction of spurious correlations, we ex-
data. Apparent correlations between scales may be intrgect that these considerations can be applied to general scale-
duced by the left-justified increment. The importance of thedependent measures of complexity, such as the rms width
increment definition varies between the ideal cases of thg,r(t):<(§(t)_§)2>r1/2 or wavelet functions. One could gener-

LRW (6), where it is nonrelevant, and the WNB), where it 51y gistinguish between measures which are orthogonal on
is crucial. In this case the use of left-justified incrementsyifterent scales and those which are ja6]. We expect
leads to biased results for correlations between differengjjjar results for correlations between scales as demon-

scales. Especially, the surface measurement data we haxgateqd here for left-justified and centered increments.
studied require the centered definition on all accessible scales

[5,13. For turbulent velocities this influence depends on the
regarded lengthor time) scaler. In previous publications
[2,14 no significant difference between the drift and diffu-  We experienced helpful discussions with R. Friedrich, M.
sion coefficients of the Fokker-Planck equatiorApfandA,  Siefert, M. Haase, and A. Mora. Financial support by the
was found. This is in accordance with our findings in Fig. German Volkswagen Foundation is kindly acknowledged.
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